Update COVID-19 Malang
Jajak Pendapat

Apa saja gejala COVID-19?

Batuk
Pilek
Sakit Tenggorok
Sesak/Nyeri dada
Semua

Klinik Respirasi Malang Klinik Respirasi Malang Whatsapp Klinik Respirasi Malang Reservasi Klinik Respirasi malang Peta Lokasi Klinik
Berita Kesehatan

How did COVID-19 lockdown affect air pollution levels in Europe?


Lockdown measures to control the COVID-19 pandemic in Europe in 2020 have resulted in significant reductions in air pollutant emissions and concentrations within days and weeks, though with notable differences between pollutants, countries and cities. The largest decreases in monthly averages of up to 70% in NO2, compared with expected concentrations in the absence of lockdown measures, were observed at traffic monitoring stations in Spain and Italy, while reductions in background NO2 concentrations for selected countries ranged from an average 61% in Spain to 20% in Czech Republic. In some cities, NO2 levels remained relatively low even after lockdown measures were lifted (Milan, Italy), while in others (Athens, Greece) they rapidly returned to “normal”. For PM2.5, decreases in background concentrations ranged from 30% in Spain to 9% in the Czech Republic, compared to expected levels. Reductions in PM2.5 levels were smaller and less consistent than those for NO2, owing to the generally more varied sources of PM2.5, especially in urban areas, including the combustion of fossil fuel for heating, industrial activities, long-range transportation of particles, road traffic and secondary particle formation. Importantly, these reductions were largely short term, with levels rebounding as economic activity increased again.

What is the role of ambient air pollution in transmission of COVID-19?

There has been speculation that particles in the air may serve as a carrier of SARS-CoV-2 virus-laden respiratory particles, thereby enhancing transmission in areas with higher levels of particulate matter pollution. There have been several studies published linking ambient air pollution (PM2.5 or NO2 concentrations) and the number of infection cases based on simple correlation analysis. However, without considering other critical factors driving the pandemic, and in particular severely limited human interactions during lockdowns (for the purpose of halting the spared of the pandemic), the relationships uncovered are likely proxies for other factors, in particular reduction in traffic and industrial activities, hence reduction in the emissions to the air, and in turn concentrations of pollutants in the cites where lockdowns where implemented. Most outdoor air particles are small, within the lower submicrometre size range. A “naked” SARS-CoV-2 virus measures approximately 0.12 µm, however, virus-laden respiratory particles also contain water, mucus and salts and measure up to a few micrometres. Thus, since an aerosolised virus in the air is not “naked”, the majority of particles in urban air, which are small cannot be carriers of such bigger, virus-laden particles. Furthermore, the interaction between same size particulate matter and SARS-CoV-2 virus particles is very slow, because their respective concentrations in outdoor air are low, in contrast to indoor air, where the majority of human exposure to SARS-CoV-2 virus occurs. Hence, ambient air pollution particles likely do not play a role in the transmission of SARS-CoV-2.

What did COVID-19 teach us about planetary health?

The world today is highly interconnected with intensive global flows of people, natural resources and pollution between all parts of the world. This causes major destruction in wildlife populations and ecosystems and increases contact between human populations and wildlife reservoirs of potentially pathogenic bacteria and viruses. Ecosystem destruction leads to species loss and population decline. The disturbed system now starts to favour species with high reproductive rates and short life cycles. They form highly dense populations, typically also highly conductive and prone to transmit diseases. When natural food webs are disturbed, the resource use behaviour in higher trophic levels changes, making them prone to high mutation rate pathogens, such as SARS-CoV-2 type RNA viruses. Reaching a new cyclic balance, e.g. for COVID-19, may take at least two years. The unprecedented scale at which animals are raised for food production nowadays also increases the risks of infectious disease spill over from animal to human populations. The COVID-19 crisis highlights the link between human health and healthy ecosystems, underlining the need to take a more comprehensive and planetary approach to health. The Helsinki Declaration of Planetary Health calls upon impact-oriented actions in policies much beyond the health sector, both in the long and short term, and emphasises that both the health of human civilisation and the state of natural systems on which it depends, must become the driver of all policies. This requires knowledge about emergence to spread, health impact, socio-political response and recovery plan from multidisciplinary research.

The tragedy of COVID-19 exposes our vulnerability as a global society and our dependence on healthy ecosystems. The pandemic has made us reflect on how we can repair the systemic failure that brought us here, and how can we restore a healthy human–nature relationship to best protect ourselves and future generations from the next man-made crisis, whether it is caused by infectious agents, climate change or pollution. The “WHO Manifesto for a Healthy Recovery from COVID-19” provides six prescriptions for a green recovery, including: 1) recovering relationship with our nature through biodiversity; 2) providing access to safe water and basic hygiene; 3) accelerating transition to renewable energy and stopping fossil fuel combustion; 4) promoting sustainable food production, consumption and waste management; 5) building healthy and sustainable cities with health in focus of urban planning; and 6) making sure that stimulus packages for economic recovery are not funding the fossil fuel-based economy. Tackling causes of air pollution is intricately connected with some of these prescriptions, and is an urgently needed investment that will reduce susceptibly and mortality from COVID-19 and other respiratory pathogens, while also reducing the 6.7 million premature deaths due to air pollution annually globally.

Even before it emerged that air pollution may be a risk factor for more severe illness from COVID-19, the pandemic alerted us to a number of issues: 1) the importance of lung health, and our vulnerability to infectious respiratory pathogens that can spread rapidly in our highly mobile society; 2) the massive disparities in social determinants of health that are clearly visible around the world; and 3) society's remarkable willingness to make severe personal and economic sacrifices for the sake of health, especially when decision-making is transparent and evidence-based. In the joint statement “Bounce Back Better: Sustainable Strategies for a Healthy Recovery from the Pandemic” from the ERS, American Thoracic Society and ISEE, professional societies dedicated to promoting respiratory and environmental health, the COVID-19 pandemic is viewed as a historic opportunity to rethink societal priorities towards clean energy and sustainability in all areas. Similarly, “COVID-19 Pandemic: A Wake-Up Call for Clean Air” calls for that cleaning up of air as a necessary ingredient of post COVID-19 recovery, for improving respiratory health and equality worldwide.

The European Commission adopted a European Green Deal (EGD) in December 2019, just ahead of the COVID-19 crisis, as a strategy to be the first climate neutral (reducing greenhouse gas emissions as much as possible and compensating for any remaining emission) continent in the world. An integral part of the EGD is “A Zero Pollution Ambition”, at the core of which is clean air. Within the EGD, the European Commission has proposed to revise the EU Air Quality Standards to align them more closely with the WHO Air Quality Guideline recommendations, of which a new update will be published in 2021. It will be important that the latest scientific evidence on the health effects of air pollution is presented and considered in the legislative discussions. The impact of COVID-19 lockdowns on air quality was notable, but came at a significant short-term economic disruption. Seeing that we can achieve drastic air pollution reductions, we need to build those into structural changes as part of a long-term green recovery strategy, including the key principles of “do no harm”, zero pollution and clean air objectives.

Conclusion

Air pollution can increase the severity and risk of death from COVID-19 infection, by compromising the individual immune system's ability to fight infections and by increasing the risk of predisposing chronic diseases. We need carefully designed studies at the individual level, preferably from several countries using the same protocols and design, in order to quantify the burden of COVID-19 due to air pollution. The COVID-19 pandemic has painfully demonstrated the close interconnectedness of a fossil fuel-based economy, climate change, air pollution and emerging infectious diseases, and provides compelling additional motivation for stricter air pollution regulation, as an integral and imperative part of post pandemic policies, ensuring more healthy and resilient populations. The unprecedented decreases in air pollution around Europe during the COVID-19 lockdown showed an example of what can be achieved. As air pollution is increasing again back to pre-pandemic levels, we need bold policies and structural changes in our cities, transportation, industry, agriculture and energy systems to ensure long-term reductions in air pollution and greenhouse gases, moving away from fossil fuels. As cleaner air policies will provide immediate substantial health benefits to European citizens, their co-benefits in tackling climate change crises make them central to ensuring more healthy and resilient populations, environment and the planet.

Footnotes

  • The opinions expressed in this manuscript are those of the authors and should not be considered to represent an official position of the European Commission.

  • Conflict of interest: Z.J. Andersen has nothing to disclose.

  • Conflict of interest: B. Hoffmann has nothing to disclose.

  • Conflict of interest: L. Morawska has nothing to disclose.

  • Conflict of interest: M. Adams has nothing to disclose.

  • Conflict of interest: E. Furman has nothing to disclose.

  • Conflict of interest: A. Yorgancioglu has nothing to disclose.

  • Conflict of interest: D. Greenbaum has nothing to disclose.

  • Conflict of interest: M. Neira has nothing to disclose.

  • Conflict of interest: B. Brunekreef has nothing to disclose.

  • Conflict of interest: F. Forastiere reports personal fees for consultancy from Health Effects Institute, during the conduct of the study; personal fees for advisory board work from Health Effects Institute, outside the submitted work.

  • Conflict of interest: M.B. Rice has nothing to disclose.

  • Conflict of interest: F. Wakenhut has nothing to disclose.

  • Conflict of interest: E. Coleen has nothing to disclose.

  • Conflict of interest: H. Boogaard has nothing to disclose.

  • Conflict of interest: U. Gehring has nothing to disclose.

  • Conflict of interest: E. Melén has nothing to disclose.

  • Conflict of interest: B. Ward is an employee of the European Respiratory Society.

  • Conflict of interest: S. De Matteis has nothing to disclose.

  • Received April 12, 2021.
  • Accepted June 26, 2021.
  • Copyright ©The authors 2021.

sumber : https://erj.ersjournals.com/content/58/2/2101063

 
 

PRAKTEK Alamat 1:
RS Panti Waluya /RKZ Sawahan, Lt II-N
, Dr Koentjahja, SpP
Nusakambangan 56, Malang 65117
08113777488 / 362017 ext. 88.23
Pukul 18.30 - selesai, kec. Sabtu, Minggu / Libur

Alamat 2:
Rumah
, Dr Koentjahja, SpP
Wilis Indah A-6, Malang 65115
0341-568711
Senin, Selasa, Kamis & Jumat Pukul 09.00-selesai,
Rabu & Sabtu Pukul 08.30-selesai,
kec. Minggu / Libur

    


Peta Lokasi